1 A curve has implicit equation $y^2 + 2x \ln y = x^2$.

Verify that the point (1, 1) lies on the curve, and find the gradient of the curve at this point. [6]

- 2 A curve has equation $x^2 + 2y^2 = 4x$.
 - (i) By differentiating implicitly, find $\frac{dy}{dx}$ in terms of x and y. [3]
 - (ii) Hence find the exact coordinates of the stationary points of the curve. [You need not determine their nature.]

3 Given that
$$y = \ln\left(\sqrt{\frac{2x-1}{2x+1}}\right)$$
, show that $\frac{dy}{dx} = \frac{1}{2x-1} - \frac{1}{2x+1}$. [4]

4 Fig. 7 shows the curve $x^3 + y^3 = 3xy$. The point P is a turning point of the curve.

Fig. 7

(i) Show that
$$\frac{dy}{dx} = \frac{y - x^2}{y^2 - x}$$
. [4]

[4]

(ii) Hence find the exact *x*-coordinate of P.

PhysicsAndMathsTutor.com

5 Find the gradient at the point (0, ln 2) on the curve with equation $e^{2y} = 5 - e^{-x}$. [4]

6 A curve is defined by the equation $(x + y)^2 = 4x$. The point (1, 1) lies on this curve.

By differentiating implicitly, show that $\frac{dy}{dx} = \frac{2}{x+y} - 1$.

Hence verify that the curve has a stationary point at (1, 1). [4]

- 7 A curve is defined by the equation $\sin 2x + \cos y = \sqrt{3}$.
 - (i) Verify that the point $P(\frac{1}{6}\pi, \frac{1}{6}\pi)$ lies on the curve. [1]

[5]

(ii) Find $\frac{dy}{dx}$ in terms of x and y. Hence find the gradient of the curve at the point P.

8 (i) Given that $y = \sqrt[3]{1 + 3x^2}$, use the chain rule to find $\frac{dy}{dx}$ in terms of x. [3]

(ii) Given that $y^3 = 1 + 3x^2$, use implicit differentiation to find $\frac{dy}{dx}$ in terms of x and y. Show that this result is equivalent to the result in part (i). [4]