1 A curve has implicit equation $y^{2}+2 x \ln y=x^{2}$.
Verify that the point $(1,1)$ lies on the curve, and find the gradient of the curve at this point.

2 A curve has equation $x^{2}+2 y^{2}=4 x$.
(i) By differentiating implicitly, find $\frac{\mathrm{d} y}{\mathrm{~d} x}$ in terms of x and y.
(ii) Hence find the exact coordinates of the stationary points of the curve. [You need not determine their nature.]

3 Given that $y=\ln \left(\sqrt{\frac{2 x-1}{2 x+1}}\right)$, show that $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{1}{2 x-1}-\frac{1}{2 x+1}$.

4 Fig. 7 shows the curve $x^{3}+y^{3}=3 x y$. The point P is a turning point of the curve.

Fig. 7
(i) Show that $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{y-x^{2}}{y^{2}-x}$.
(ii) Hence find the exact x-coordinate of P .

5 Find the gradient at the point $(0, \ln 2)$ on the curve with equation $\mathrm{e}^{2 y}=5-\mathrm{e}^{-x}$.

6 A curve is defined by the equation $(x+y)^{2}=4 x$. The point $(1,1)$ lies on this curve. By differentiating implicitly, show that $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{2}{x+y}-1$.

Hence verify that the curve has a stationary point at $(1,1)$.
[4]

7 A curve is defined by the equation $\sin 2 x+\cos y=\sqrt{3}$.
(i) Verify that the point $\mathrm{P}\left(\frac{1}{6} \pi, \frac{1}{6} \pi\right)$ lies on the curve.
(ii) Find $\frac{\mathrm{d} y}{\mathrm{~d} x}$ in terms of x and y.

Hence find the gradient of the curve at the point P.

8 (i) Given that $y=\sqrt[3]{1+3 x^{2}}$, use the chain rule to find $\frac{\mathrm{d} y}{\mathrm{~d} x}$ in terms of x.
(ii) Given that $y^{3}=1+3 x^{2}$, use implicit differentiation to find $\frac{\mathrm{d} y}{\mathrm{~d} x}$ in terms of x and y. Show that this result is equivalent to the result in part (i).

